Membrane topology and transient acylation of Toxoplasma gondii glycosylphosphatidylinositols.
نویسندگان
چکیده
Using hypotonically permeabilized Toxoplasma gondii tachyzoites, we investigated the topology of the free glycosylphosphatidylinositols (GPIs) within the endoplasmic reticulum (ER) membrane. The morphology and permeability of parasites were checked by electron microscopy and release of a cytosolic protein. The membrane integrity of organelles (ER and rhoptries) was checked by protease protection assays. In initial experiments, GPI biosynthetic intermediates were labeled with UDP-[6-(3)H]GlcNAc in permeabilized parasites, and the transmembrane distribution of the radiolabeled lipids was probed with phosphatidylinositol-specific phospholipase C (PI-PLC). A new early intermediate with an acyl modification on the inositol was identified, indicating that inositol acylation also occurs in T. gondii. A significant portion of the early GPI intermediates (GlcN-PI and GlcNAc-PI) could be hydrolyzed following PI-PLC treatment, indicating that these glycolipids are predominantly present in the cytoplasmic leaflet of the ER. Permeabilized T. gondii parasites labeled with either GDP-[2-(3)H]mannose or UDP-[6-(3)H]glucose showed that the more mannosylated and side chain (Glc-GalNAc)-modified GPI intermediates are also preferentially localized in the cytoplasmic leaflet of the ER.
منابع مشابه
AID-ing Signaling in Toxoplasma gondii
The cyclic GMP-dependent protein kinase (PKG) of apicomplexan parasites is essential for secretion of micronemes and host cell invasion and egress. Both kinase specificity and localization can determine which substrates are phosphorylated. The functions of plasma membrane and cytosolic PKG isoforms of Toxoplasma gondii were unknown because of difficulties precisely manipulating expression of es...
متن کاملTgCDPK3 Regulates Calcium-Dependent Egress of Toxoplasma gondii from Host Cells
The phylum Apicomplexa comprises a group of obligate intracellular parasites of broad medical and agricultural significance, including Toxoplasma gondii and the malaria-causing Plasmodium spp. Key to their parasitic lifestyle is the need to egress from an infected cell, actively move through tissue, and reinvade another cell, thus perpetuating infection. Ca(2+)-mediated signaling events modulat...
متن کاملDisruption of Lipid Rafts Interferes with the Interaction of Toxoplasma gondii with Macrophages and Epithelial Cells
The intracellular parasite Toxoplasma gondii can penetrate any warm-blooded animal cell. Conserved molecular assemblies of host cell plasma membranes should be involved in the parasite-host cell recognition. Lipid rafts are well-conserved membrane microdomains that contain high concentrations of cholesterol, sphingolipids, glycosylphosphatidylinositol, GPI-anchored proteins, and dually acylated...
متن کاملBiosynthesis of glycosylphosphatidylinositol is essential to the survival of the protozoan parasite Toxoplasma gondii.
The PIGA gene from Toxoplasma gondii has been cloned and characterized. Like mammalian PIGA, the transmembrane and C-terminal domains are sufficient to direct localization to the parasite endoplasmic reticulum. A functional copy of PIGA is required for tachyzoite viability, demonstrating that glycosylphosphatidylinositol biosynthesis is an essential process in T. gondii.
متن کاملInvasion by Toxoplasma gondii Establishes a Moving Junction That Selectively Excludes Host Cell Plasma Membrane Proteins on the Basis of Their Membrane Anchoring
The protozoan parasite Toxoplasma gondii actively penetrates its host cell by squeezing through a moving junction that forms between the host cell plasma membrane and the parasite. During invasion, this junction selectively controls internalization of host cell plasma membrane components into the parasite-containing vacuole. Membrane lipids flowed past the junction, as shown by the presence of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eukaryotic cell
دوره 5 8 شماره
صفحات -
تاریخ انتشار 2006